

SESQUITERPENE LACTONES FROM *PULICARIA SICULA**

C ZDERO, F BOHLMANN and A M RIZK*

Institute of Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, FRG, *Scientific and Applied Research Centre, University of Qatar, State of Qatar

(Received 3 August 1987)

Key Word Index—*Pulicaria sicula*, Compositae, sesquiterpene lactones, guaianolides, xanthanolides

Abstract—The aerial parts of *Pulicaria sicula* afforded the known xanthanolides **1-6**, the guaianolides **7** and **8** as well as two new ones, the lactone **9** and the corresponding epoxide **10**. Furthermore, nerylisobutyrate and the thymol derivatives **11** and **12** were present. The structures were elucidated by high field ¹H NMR spectroscopy and by partial synthesis of the epoxide **10**.

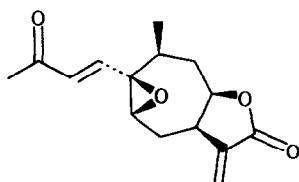
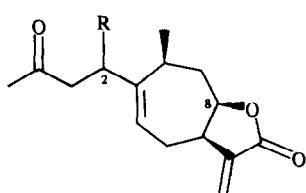
INTRODUCTION

From the genus *Pulicaria* (Compositae, tribe Inuleae, subtribe Inulinae) so far 13 species have been investigated chemically. Several species afforded diterpenes [1-4], thymol derivatives [5-8], caryophyllene derivatives [6-8] and flavones [9, 10]. The roots usually contain tridecapentaynene and trideca-tetraynediene [6]. However, *P. crispa* Sch. Bip. (= *Francoeuria crispa* Cass.) gave xanthanolides [11]. We now have studied the aerial parts of *P. sicula* (L.) Moris. The results are discussed in this paper.

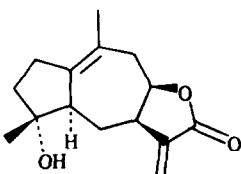
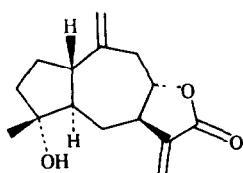
RESULTS AND DISCUSSION

From the roots of *P. sicula* (L.) Moris the isolation of widespread polyynes has been reported [5]. We now have studied the aerial parts which were collected in Qatar in spring 1987. After careful separations finally nerylisobutyrate, the thymol derivatives **11** [12] and **12** [13], the xanthanolides **1** [14], **2** [15], **3** [16], **4** [16], **5** [17] and **6** [18], the guaianolides **7** [19] and **8** [20] as well as **9** and **10** were obtained.

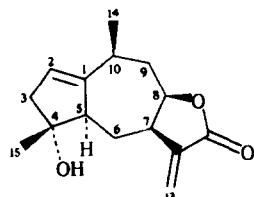
The structures of **1-8** were determined by high field ¹H NMR spectroscopy and/or by comparing the spectra with those of authentic material or with the data in the literature.

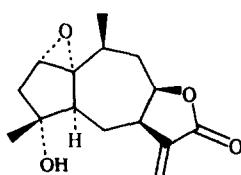


The molecular formula of **9** ($C_{15}H_{20}O_3$) already indicated that this lactone might be an isomer of **7** and **8**.

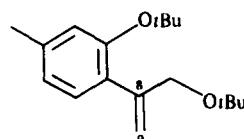
*Part XIV, Constituents of plants growing in Qatar



Table 1 ¹H NMR spectral data of **9** and **10** (400 MHz, δ values)

H	9 CDCl ₃	9 CDCl ₃ /C ₆ D ₆ (1:1)	9 C ₆ D ₆	10 CDCl ₃	10 C ₆ D ₆	Multiplicity
2	5.38	5.10	5.08	3.62 br s	2.97 br s	ddt
3	2.38 br s	2.16	2.24	2.08	1.82	br d
3'		2.09	2.10	1.78	1.22	br d
5	2.40	2.05	2.07	2.04 dd	1.68 dd	br d
6 α	2.00 m	1.63	1.58	1.81	1.24	ddd
6 β	1.41	1.07	1.03	1.41	0.72	ddd
7	3.31	2.77	2.58	3.25	2.34	ddddd
8	4.76	4.27	4.12	4.74	3.90	ddd
9 α	2.00 m	1.72	1.67	2.09	1.58	ddd
9 β	1.55	1.26	1.23	1.75	1.17	ddd
10	2.22	1.80	1.66	2.16	1.48	br ddq
13	6.26	6.14	6.23	6.32	6.21	d
13'	5.61	5.18	5.00	5.69	4.98	d
14	1.24	1.00	0.94	0.95	0.62	d
15	1.32	1.06	1.09	1.22 d	1.10 d	s
OH	1.88		1.37	3.73	3.81	br s


J [Hz] 2,3=2.5, 2,3'=2.5=2.10~1.5, 3,3'=16, 5,6 α =2, 5,6 β =6 β , 7=12, 6 α , 6 β =13, 6 α , 7=4, 7,8=8, 7,13=3, 7,13'=2.5, 8,9 α =4, 8,9 β =12, 9 α , 9 β =13, 9 α , 10=1.5, 9 β , 10=12 (compound **10** 2,3=2.3'~0.5, 3,3'=14, 5,6 α =6 α , 7=2.5, 5,6 β =12.5, 8,9 α =4.5, 9 α , 10=15, OH=1)


R	1	2	3	4	5
	H	H	OH	OH	H
			8 β H	8 β H	Δ^2


7

9

10

11

12 8,9-epoxide

Comparison of the ^1H NMR spectra (Table 1) showed that indeed a hydroxyguaianolide with two double bonds was present. The spectrum in deuteriochloroform showed several overlapping signals. But all signals could be assigned by spin decoupling in deuteriobenzene and in a mixture with chloroform. The resulting sequences clearly indicated that a 1,2-double bond was present. Furthermore the observed couplings established the configuration at C-10 while that at C-4 was deduced from the chemical shifts of H-5 and H-6 which were deshielded by the 4α -hydroxy group. This was supported by the configuration of **10** (see below).

The structure of **10** was also deduced from the ^1H NMR spectra in different solvents (Table 1). Especially

in deuteriobenzene a complete assignment of all signals was possible. As in estafiatin, only a very small vicinal coupling between the epoxide proton and the neighbouring methylene protons (H-3) were observed. A *W*-coupling between H-15 and the hydroxy proton caused a doublet splitting of the signal of the former. The configurations at C-7, C-8 and C-10 followed from the observed couplings if a model was inspected, while the configuration of the epoxide could not be determined directly. However, epoxidation of **9** afforded only one product which was identical with the natural product **10**. Inspection of a model showed that this result only agrees with the attack from the α -face. The configurations at C-1, C-2 and C-4 followed from a hydrogen bond in the ir

(3500 cm^{-1}) and were established by NOE's between H-14 and H-2 as well as between H-15 and H-6 α .

The isolation of the xanthanolides **1–6** and the guaianolides **7–10** may be an indication that *P. scula* is related to *P. crispa* which afforded very similar constituents. The presence of thymol derivatives is less important as these compounds are widespread in the whole subtribe.

EXPERIMENTAL

The air-dried aerial parts (250 g, collected during February 1987 in Qatar, voucher deposited in the Herbarium of the University of Qatar) were extracted with Et_2O –MeOH–petrol, 1:1:1, and the extract obtained was separated as reported previously [21]. CC fractions were combined into four parts (1 Et_2O –petrol, 1:9, 2 Et_2O –petrol, 1:3, 3 Et_2O and 4 Et_2O –MeOH, 9:1). TLC of fraction 1 (silica gel, PF 254, Et_2O –petrol, 1:9) gave 20 mg **11** and 10 mg **12**. TLC of fraction 2 (Et_2O –petrol, 1:3) gave 30 mg nerylisobutyrate and TLC of fraction 3 (Et_2O –petrol, 1:1) afforded 280 mg **2** and 220 mg **1** (less polar). HPLC of fraction 4 (RP 18, MeOH– H_2O , 13:7, *ca* 100 bar) afforded 10 mg **8** (R_f 6.0 min) and two mixtures (4/2, R_f 1.5 min and 4/3, R_f 3.0 min). Fraction 4/2 gave by TLC (CHCl_3 – C_6H_6 – Et_2O –MeOH, 20:20:10:1) 4 mg **5** (R_f 0.80), 1 mg **6** (R_f 0.62), 2 mg **10** (R_f 0.60), 2 mg **4** (R_f 0.50) and 4 mg **3** (R_f 0.40). TLC of fraction 4/3 (Et_2O , two developments) gave 40 mg **7** (R_f 0.62) and 20 mg **9** (R_f 0.55).

1,2-Dihydro-1,10 α -dihydropsidoualin (9) Colourless crystals, mp 112°. IR $\nu_{\text{max}}^{\text{CCl}_4}$, cm^{-1} 3600 (OH), 1770 (γ -lactone), MS m/z (rel. int.) 248 (141) [$\text{M}]^+$ (7) (calc. for $\text{C}_{13}\text{H}_{20}\text{O}_3$, 248 (141), 230 [$\text{M} - \text{H}_2\text{O}]^+$ (42), 215 [230 – Me] $^+$ (12), 206 (20), 190 (47), 119 (100), 91 (60), $[\alpha]_D^{24} + 6$ (CHCl_3 , *c* 1.53).

To 10 mg **9** in 2 ml CHCl_3 , 20 mg *m*-chloroperbenzoic acid and 10 mg K acetate were added. After 30 min stirring, usual work-up afforded 10 mg **10**, identical with the natural lactone $1\alpha,2\alpha$ -Epoxy-1,10 α -dihydropsidoualin (**10**). Colourless crystals, mp 173°. IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm^{-1} 3500 (OH, hydrogen bonded), 1770 (γ -lactone), MS m/z (rel. int.) 264 (136) [$\text{M}]^+$ (1) (calc. for $\text{C}_{15}\text{H}_{20}\text{O}_4$, 264 (136), 249 [$\text{M} - \text{Me}]^+$ (7), 246 [$\text{M} - \text{H}_2\text{O}]^+$ (6), 231 [246 – Me] $^+$ (9), 221 (12), 206 (26), 204 (25), 166 (70), 108 (100), 95 (98), $[\alpha]_D^{24} + 60$ (CHCl_3 , *c* 0.08).

Acknowledgement—We thank Dr G El-Ghazaly (Botany Dept., Qatar University) for identification of the species.

REFERENCES

- 1 Singh, P., Sharma, M. C., Joshi, K. C. and Bohlmann, F. (1985) *Phytochemistry* **24**, 190
- 2 Nurmukhamedova, M. R., Kasymov, S. Z., Abdullaev, N. D., Sidiyakun, G. P. and Yagudaev, M. R. (1985) *Khim. Prir. Soedin.* **21**, 201
- 3 Nurmukhamedova, M. R., Abdullaev, N. D. and Sidiyakun, G. P. (1986) *Khim. Prir. Soedin.* **22**, 299
- 4 Rustaiyan, A., Simozar, E., Ahmadi, A., Grenz, M. and Bohlmann, F. (1981) *Phytochemistry* **20**, 2772
- 5 Schulte K. E., Reisch, J. and Hopmann, J. (1963) *Arch. Pharm.* **296**, 353
- 6 Hafez, S., Sarg, T. M., El-Domiaty, M. M., Ahmed, A. A., Melek, F. R. and Bohlmann, F. (1987) *Phytochemistry* **26**, 3356
- 7 Bohlmann, F. and Zdero, C. (1981) *Phytochemistry* **20**, 2529
- 8 Bohlmann, F., Ahmed, M. and Jakupovic, J. (1982) *Phytochemistry* **21**, 1659
- 9 Pareso, J. O., Oksuz, S., Ulubelen, A. and Mabry, T. J. (1981) *Phytochemistry* **20**, 2017
- 10 El-Negoumy, S. I., Mansour, R. M. A. and Saleh, N. A. M. (1982) *Phytochemistry* **21**, 953
- 11 Bohlmann, F., Knoll, K. H. and El-Emary, N. A. (1979) *Phytochemistry* **18**, 1231
- 12 Bohlmann, F., Jakupovic, J. and Lonitz, M. (1977) *Chem. Ber.* **110**, 301
- 13 Bohlmann, F., Niedballa, V. and Schulz, J. (1969) *Chem. Ber.* **102**, 864
- 14 Rodriguez, E., Yoshioka, H. and Mabry, T. J. (1971) *Phytochemistry* **10**, 1145
- 15 Bohlmann, F., Mahanta, P. K., Jakupovic, J., Rastogi, R. C. and Natu, A. A. (1978) *Phytochemistry* **17**, 1165
- 16 Bohlmann, F., Jakupovic, J. and Schuster, A. (1981) *Phytochemistry* **20**, 1891
- 17 McMullan, C., Chavez, P. I., Plettman, S. G. and Mabry, T. J. (1975) *Biochem. Syst. Ecol.* **3**, 181
- 18 Bohlmann, F., Singh, P., Joshi, K. C. and Singh, C. L. (1982) *Phytochemistry* **21**, 1441
- 19 Zdero, C., Bohlmann, F., King, R. M. and Robinson, H. (1987) *Phytochemistry* **26**, 1207
- 20 Herz, W., Romo de Vivar, A. and Lakshminikantham, M. V. (1965) *J. Org. Chem.* **30**, 118
- 21 Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) *Phytochemistry* **23**, 1979